skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Jiajie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A long-standing fundamental open problem in mathematical fluid dynamics and nonlinear partial differential equations is to determine whether solutions of the 3D incompressible Euler equations can develop a finite-time singularity from smooth, finite-energy initial data. Leonhard Euler introduced these equations in 1757 [L. Euler,Mémoires de l’Académie des Sci. de Berlin11, 274–315 (1757).], and they are closely linked to the Navier–Stokes equations and turbulence. While the general singularity formation problem remains unresolved, we review a recent computer-assisted proof of finite-time, nearly self-similar blowup for the 2D Boussinesq and 3D axisymmetric Euler equations in a smooth bounded domain with smooth initial data. The proof introduces a framework for (nearly) self-similar blowup, demonstrating the nonlinear stability of an approximate self-similar profile constructed numerically via the dynamical rescaling formulation. 
    more » « less
  2. In this paper, we construct a novel Eulerian–Lagrangian finite volume (ELFV) method for nonlinear scalar hyperbolic equations in one space dimension. It is well known that the exact solutions to such problems may contain shocks though the initial conditions are smooth, and direct numerical methods may suffer from restricted time step sizes. To relieve the restriction, we propose an ELFV method, where the space-time domain was separated by the partition lines originated from the cell interfaces whose slopes are obtained following the Rakine–Hugoniot junmp condition. Unfortunately, to avoid the intersection of the partition lines, the time step sizes are still limited. To fix this gap, we detect effective troubled cells (ETCs) and carefully design the influence region of each ETC, within which the partitioned space-time regions are merged together to form a new one. Then with the new partition of the space-time domain, we theoretically prove that the proposed first-order scheme with Euler forward time discretization is total-variation-diminishing and maximum-principle-preserving with at least twice larger time step constraints than the classical first order Eulerian method for Burgers’ equation. Numerical experiments verify the optimality of the designed time step sizes. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Abstract We present a class of high-order Eulerian–Lagrangian Runge–Kutta finite volume methods that can numerically solve Burgers’ equation with shock formations, which could be extended to general scalar conservation laws. Eulerian–Lagrangian (EL) and semi-Lagrangian (SL) methods have recently seen increased development and have become a staple for allowing large time-stepping sizes. Yet, maintaining relatively large time-stepping sizes post shock formation remains quite challenging. Our proposed scheme integrates the partial differential equation on a space-time region partitioned by linear approximations to the characteristics determined by the Rankine–Hugoniot jump condition. We trace the characteristics forward in time and present a merging procedure for the mesh cells to handle intersecting characteristics due to shocks. Following this partitioning, we write the equation in a time-differential form and evolve with Runge–Kutta methods in a method-of-lines fashion. High-resolution methods such as ENO and WENO-AO schemes are used for spatial reconstruction. Extension to higher dimensions is done via dimensional splitting. Numerical experiments demonstrate our scheme’s high-order accuracy and ability to sharply capture post-shock solutions with large time-stepping sizes. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Inspired by the numerical evidence of a potential 3D Euler singularity by Luo- Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of the 3D Euler equation without swirl with $$C^{1,\alpha}$$ initial data for the velocity, we prove the finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations in the presence of boundary with $$C^{1,\alpha}$$ initial data for the velocity (and density in the case of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations and the singular solution considered in [30,31] share many essential features, including the symmetry properties of the solution, the flow structure, and the sign of the solution in each quadrant, except that we use $$C^{1,\alpha}$$ initial data for the velocity field. We use a dynamic rescaling formulation and follow the general framework of analysis developed by Elgindi in [11]. We also use some strategy proposed in our recent joint work with Huang in [7] and adopt several methods of analysis in [11] to establish the linear and nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equations with $$C^{1,\alpha}$$ initial data will develop a finite time singularity. Moreover, the velocity field has finite energy before the singularity time. 
    more » « less
  6. null (Ed.)
    We present a novel method of analysis and prove finite time asymptotically self- similar blowup of the De Gregorio model [13,14] for some smooth initial data on the real line with compact support. We also prove self-similar blowup results for the generalized De Gregorio model [41] for the entire range of parameter on R or $S^1$ for Holder continuous initial data with compact support. Our strategy is to reformulate the problem of proving finite time asymptotically self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile with a small residual error using the dynamic rescaling equation. We use the energy method with appropriate singular weight functions to extract the damping effect from the linearized operator around the approximate self-similar profile and take into account cancellation among various nonlocal terms to establish stability analysis. We remark that our analysis does not rule out the possibility that the original De Gregorio model is well posed for smooth initial data on a circle. The method of analysis presented in this paper provides a promising new framework to analyze finite time singularity of nonlinear nonlocal systems of partial differential equations 
    more » « less
  7. null (Ed.)
    We present a novel method of analysis and prove finite time asymptotically self- similar blowup of the De Gregorio model [13,14] for some smooth initial data on the real line with compact support. We also prove self-similar blowup results for the generalized De Gregorio model [41] for the entire range of parameter on R or $S^1$ for Holder continuous initial data with compact support. Our strategy is to reformulate the problem of proving finite time asymptotically self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile with a small residual error using the dynamic rescaling equation. We use the energy method with appropriate singular weight functions to extract the damping effect from the linearized operator around the approximate self-similar profile and take into account cancellation among various nonlocal terms to establish stability analysis. We remark that our analysis does not rule out the possibility that the original De Gregorio model is well posed for smooth initial data on a circle. The method of analysis presented in this paper provides a promising new framework to analyze finite time singularity of nonlinear nonlocal systems of partial differential equations. 
    more » « less